参考:
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py

Step1准备数据输入

按需制作训练集

Step2 设计神经网络

注意forward()函数是override method,名字不能改

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()

##Step3 定义损失函数和优化方法

1
2
3
4
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

Step4 训练网络

4.1 循环更新参数

  • for epoch in range(times):
    • 参数的梯度置零
    • 前向传播获取神经网络的输出
    • 比较输出与标签的差距并计算损失
    • 损失反向传播
    • 优化器更新参数
    • 累计损失
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
for epoch in range(2):  # loop over the dataset multiple times

running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data

# zero the parameter gradients
optimizer.zero_grad()

# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

running_loss += loss.item()

Step4 保存训练结果

1
torch.save(net.state_dict(), PATH)

Step5 恢复并评估模型

5.1恢复模型

1
2
net = Net()
net.load_state_dict(torch.load(PATH))

5.2 测试集前向传播得到输出

1
2
with torch.no_grad():
outputs = net(images)